- ベストアンサー
等差等比級数の和の求め方
- 等差等比級数の和を求める際に、以下の式を利用します。
- また、微分を利用することで、和の式を導出することもできます。
- 質問文中の式や計算過程について、具体的な補足をお願いしています。
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
こういうことでは? http://bit.ly/gHSCw8 2行目の最後の式から先はご質問にある通りの手順なのでおわかりになると思います。
その他の回答 (2)
No. 2です。 TeXclipというWebアプリを用いています。(http://maru.bonyari.jp/texclip/) LaTeXの文法で数式を入力すると、No. 2のような出力を返してくれます。 No. 2の場合は http://bit.ly/fMaVy8 のようなコマンド入力になります。(左にある「Generate Image」ボタンをクリックすると結果が得られます。) テキストで数式を表現するのはなかなか大変ですよね。特に、積分や級数和の入力にはみなさん苦労しているように見受けられます。(時折、独自色あふれる記法が見られます。) LaTeX記法は、誤解なく正確にそれらを伝えることができる方法です。ここで回答される方々にはLaTeXを解する人も多いと思うので、可能ならば利用するのも1つの手だろうと思います。
お礼
お返事送れて申し訳ございませんでした。 記述方法を習得するのに少し大変そうですが、こちらのほうが回答を頂いたときにも分かりやすいと感じたので、質問でも利用してみようと思います。 ありがとうございました。
- spring135
- ベストアンサー率44% (1487/3332)
∞ Σm(m-1)(5/6)^(m-2) m=2 x=5/6とおくと ∞ ∞ ∞ ∞ ∞ S=Σm(m-1)x^(m-2)=Σ(n+2)(n+1)x^n=Σn^2x^n+3Σnx^n+2Σx^n+2 m=2 n=0 n=1 n=1 n=1 ∞ Σn^px^n=Spとかくと n=1 -1<x<1のとき S0=x/(1-x) S1=x/(1-x)^2 S2=x(1+x)/(1-x)^3 SpはS0をxで順次微分すれば容易に得られる。 QED
お礼
n次微分を用いればいいのですね。先ほど解き直したらできました!ありがとうございました。
お礼
できました!!ずっとわかんなくて悩んでいたので、すっきりしました!ありがとうございます。 ちなみに、質問とは関係がないのですがkaorineさんのように数式を張るのはどうやってやればいいのですか? 質問をするときにokwaveでは表記が分かりにくくて困っています。