- ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:Wikipediaの「Jensenの不等式」の定義について)
Jensenの不等式の定義について
このQ&Aのポイント
- Jensenの不等式は、実数上の凸関数において、重み付きの平均値が関数の平均値以上であることを表す不等式です。
- 具体的には、実数の列と重みの列が与えられた場合、重み付きの関数値の総和が関数の重み付きの変数の総和の関数値以上になることを示します。
- 一般的なJensenの不等式では、重みの列は非負数であるという制約がありますが、拡張版では非負数でなくても成り立ちます。
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
wikipediaの記載もれでしょう。 p_1,p_2,・・・≧0でない場合は、 Σ[i=1→∞]p_if(x_i)≧f(Σ[i=1→∞]p_ix_i) が成立しない反例は簡単に見つかりますから。
お礼
どうもありがとうございます。 やはりwikiのミスですよね。 こうゆうパターンだと私の勘違いということの方が圧倒的に多いのですが、安心致しました。 どうもありがとうございました。