アンテナの電界強度について
今、自分は大学でアンテナについて研究し始めました。
その中で、半波長ダイポールアンテナについて質問させていただきたいと思い、投稿いたしました。
(質問)
半波ダイポールアンテナをi=I sin ωt という電流で励振させたとき、中心Oから両端へ向かって、それぞれxだけはなれた距離の点A,Bに線素dxを考える。A点の電流iaとB点の電流ibは、
ia=I cos mx sin ωt
ib=I cos mx sin ωt m=2π/λ
となる。
半波長ダイポールから十分遠い距離の点Pにia,ibによって生じる電界強度をdea,debとして求め、その電界強度を合成して、合成電界強度deを求めます。そのdeを[0,λ/4]の範囲で積分してタブレット全体によりP点に生じる電界強度eを求めました。その結果、
e=j(60I/r)〔{cos(π/2 cosθ)}/sinθ〕sin ωt
となるところまでは 分ったのですが・・・
本論はここからなんです
半波長ダイポールの放射抵抗を求めるとき、電界強度Eθを求めるって書いてあって、その教科書には
Eθ=| e | となり
Eθ=(60I/r)〔{cos(π/2 cosθ)}/sinθ〕
だと書いてあるのですが、イマイチ意味がわかりません。説明が下手で申し訳ないのですが、もし詳しいかたいらっしゃいましたら教えてください。自分的にはEθはsin ωtの振幅を意味してるので、そこらへんから来てるのかと思うのですが。是非ともアドバイスお願いします。
補足
参考になりました。0.34平方メートルもの大きな面積で収集しても、エネルギーが10のマイナス16乗ワットのオーダーでしかないことがわかりました。我々の住むこの空間に、どの程度の大きさのエネルギーがあるのかを知りたかったのです。この程度のエネルギーだと、地球磁場のエネルギーの方が格段に大きそうな気がします。この空間に充満している薄いエネルギーだけで動く、ナノマシンを夢想していましたが、難しそうです。