• ベストアンサー

教えてください。

中学3年生の「相似を使った図形の計量問題」で つまづいて、すごく困っています。 周りに聞く人もいないので、誰か、教えてください。 よろしくお願いします。 (問題) OA=9cm、AB=8cmの正四角すいである。 辺OA、OB、OC、ODの中点をそれぞれ、P、Q、R、sとするとき 次の問いに答えよ。 (1)四角形PQRSの面積を求めよ。 (2)四角形ABCDを底面とする正四角すいO-ABCDの高さを求めよ。 (解答) (1)四角形PQRSの面積は 四角形ABCDの面積の2分の1の2乗=「4分の1」だから 8の2乗×4分の1=16(平方センチメートル) ※ここで、わからなかったのは、どうして、2分の1とわかったので しょうか?また、その2分の1を2乗し、さらに、8cmまで2乗して 計算したのは、なぜでしょうか? (2)頂点Oから底面の四角形ABCDに垂線OHをひくと △OAHでOA=9cm、AH=4ルート2だから、三平方の定理により OH=ルート49=7(cm) ※AH=4ルート2というのは、どうやって求めるのでしょうか? それさえ理解できれば、この問題はわかるのですが・・・。 たくさん、質問しちゃってごめんなさい。 試験まで、あと3週間になってしまい 少し、焦っています。 見にくい文章になってしまい、すみませんが どうか、よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • hestia
  • ベストアンサー率48% (15/31)
回答No.7

再び家庭教師のお兄さんです(^^; さっそく回答へ… (1) >※ここで、わからなかったのは、どうして、2分の1とわかったので >しょうか?また、その2分の1を2乗し、さらに、8cmまで2乗して >計算したのは、なぜでしょうか? 正四角錐の側面、「三角形OAB」を考えてください。 OAの中点にP、OBの中点にQがあるはずですよね。 PQを線で結ぶと「中点連結定理」が使える形になりますよね? よってPQ//AB、PQ=(2分の1)AB…(1)となるわけです。 次に三角形OABと三角形OPQについて考えましょう。 点P,QはそれぞれOAとOBの中点ですから OP=(2分の1)OA…(2),OQ=(2分の1)OB…(3) ですね。(1),(2),(3)より三角形の三辺の長さの比がそれぞれ等しいので 三角形OAB∽三角形OPQといえる、わけです。 同様に正四角錐ですから 三角形OBC∽三角形OQR,三角形OCD∽三角形ORS,三角形ODA∽三角形OSPも言えます。 これで四角錐O-ABCDと四角錐O-PQRSは相似であることが納得していただけるでしょうか? (立体の相似の証明を文章で正確にやるのはちょっと難しくって(苦)) よって底面の部分である四角形ABCDと四角形PQRSは相似ですよね。 線分の長さの比は2分の1、ということがわかるので 相似な図形の面積比は「線分比の2乗」で(4分の1)となるわけで、 四角形PQRSの面積=四角形ABCDの面積×((2分の1)の2乗) というわけだったのです。 四角形ABCDの面積は、一辺が8cmですから8×8ですね。 (O-ABCDが正四角錐ということですから、  底面の四角形ABCDは「正方形」になっています。  つまり縦も横の長さも等しい) (2) >※AH=4ルート2というのは、どうやって求めるのでしょうか? >それさえ理解できれば、この問題はわかるのですが・・・。 正四角錐の頂点Oから底面ABCDに垂線を下ろすと 四角形ABCDの中心に落ちてきます。 つまり点Hは四角形ABCDの中心、対角線ACの中点および対角線BDの中点です。 (もちろん、四角形ABCDは正方形だからです。) 三角形ABCを考えると点HはACの中点ですから AHの長さはACの半分のはずですね。 そこで三平方の定理より (ACの2乗)=(ABの2乗)+(BCの2乗)        =64+64        =128 両辺ルートして AC=8ルート2 ですね。AHはこれの半分、 AH=(8ルート2)/2   =4ルート2 となるわけです。 ああああーーー、長くなってしまいました。ごめんなちゃいm(_._)m

nyankomama
質問者

お礼

前回に続き、どうもありがとうございました。 とても、見やすく、わかりやすく、親切に教えてくれるので 助かりました。 特に、ほかの方の解答では見られなかった ↓の部分が助かりました。 >次に三角形OABと三角形OPQについて考えましょう。 >点P,QはそれぞれOAとOBの中点ですから >OP=(2分の1)OA…(2),OQ=(2分の1)OB…(3) >ですね。(1),(2),(3)より三角形の三辺の長さの比がそれぞれ等しいので >三角形OAB∽三角形OPQといえる、わけです。 この部分は、私の持っている問題集の解答には 掲載されていないんです。 前に、答えも大切だけど、もっと大切なのは その過程だと教えてもらってから こういう部分をおろそかにせず 勉強することにしています。 (2)は、三平方の定理を使えば 以外に簡単に求めることが出来る問題なんですね。 図形には、たくさん時間をかけてますが まだまだ、過去問が解けるとこまできてないので もっと頑張って勉強しようと思っています。 独学で勉強していると わからない問題にブチあたった時 すごく不安でしたが ここでは、皆さんがわかりやすく丁寧に教えてくれるので とても助かります。 また、質問するかもしれませんが その時はよろしくお願いします。

その他の回答 (7)

  • muni2
  • ベストアンサー率24% (15/61)
回答No.8

 受験勉強ですか?だったらラストスパートですね。ふぁいと!  三角形の問題が苦手のようですが三平方の定理が理解できていますか?    では、まずお答えから。  1.面積PQRSがなぜ4分の1になるのか。着目は、三角形OABです。底辺が8センチその他の辺が9センチと9センチの2等辺三角形ですね。ここで辺ABに中点Eというのを書き込んでみてください。点Pは辺OAの中点ですね?  PQEを結ぶと、合同の三角形が4つ見えてきませんか?それがわかれば問い1は終わりです。  まだ分からなかったら、ヒント2.  辺PQは辺ABの2分の1です。(証明は後で。)正方形は1辺かける1辺だから、2分の1かける2分の1で4分の1。正方形PQRSは正方形ABCDの4分の1が分かったので、正方形ABCDの面積を求めましょう。1辺が8センチなので、8かける8ですね?  つまり8の2乗×4分の1です。  辺PQは辺ABの2分の1 証明  三角形OPQと三角形OABは2等辺三角形でその2辺の挟角が等しいので、相似である。OAはOPの2倍、OBはOQの2倍であるので、ABはPQの2倍である。終  問い2.四角形ABCDに着目。AとC、BとDを結んでください。真中にある交差点が点Hになってますね。(どうしてそれがHだと確信がもてるのだ!と思う?それなら終わりまでよんでね)  三角形HABは挟角90度の直角2等辺三角形です。ルート2はここからでます。  辺AH:辺HB:辺AB=1:1:ルート2。(←重要!)辺AHの求め方は比を使います。ABが8センチなので、8:ルート2=辺AH:1これを分数の形で作る人がおおいですが、理論がわかるので私はいつもこうしてから分数になおします。書くのは分数の形の式からでいいです。計算するとAHは4ルート2。    次はラスト。三角形OHAです。点Hは点Oから垂直に降ろした足なので、角OHAは直角(90度)。3平方の定理より、9の2乗=4ルート2の2乗+OHの2乗。これを計算すると(←これは自力でがんばって展開して!)OHは7ですね。  点Hはなぜ交差点か?  正四角すいの定義はここからきています。正四角形の中点を垂直に伸ばした点を四角のそれぞれの点で結んだものが四角すいだから。     ところで四角すいの体積の計算は3年までに学習するのでしょうか。(私のころはしましたが。)もし習っているのなら体積の計算方法も合わせて例題を復習しましょう。    発展1。さっきは点Pは辺OAの中点(2分の1)でしたが、3分の1、3分の2になったらどうなるでしょうか?(びびらないで余裕をもってね)  さっき中点Eというのを作って合同な三角形を4つ作りましたね。それにもう5つ書き足して9こにしてください。そうすると「倍」のイメージがつかめますよ。  発展2。正三角すいでは中点はどうなるか?正三角形ABCのBCの中点に点EをつくりAEを結ぶ。同じようにBとCからも垂線を引く。交差点が中点。  ではがんばってください。風邪には気をつけてね(^^)/~~

nyankomama
質問者

お礼

この問題の解答だけでなく 苦手な図形に対処する方法まで書いてくださり 本当にありがとうございました。 発展問題を見て 私、だいぶビビってます(汗) おかげさまで この問題に関しては、理解することが出来ました。 でも、三平方の定理をもう1度 復習をしてから、次に進もうと思っています。 受験日まで、あと3週間ぐらいなんですが 図形だけが、遅れていて 焦っていますが、それでも、頑張ろうと 思っています。 風邪・インフルエンザが流行っているので 気をつけないといけませんね。 (看護学校を受験するので 特に、風邪だけは気をつけないと・・・ 自己管理が悪いと言われるので^^) 図形が苦手なので また、質問するかもしれませんが そのときはよろしくお願いします。

  • novaakira
  • ベストアンサー率36% (60/164)
回答No.6

(2)の回答 AHの求め方ですが、 正方形に対角線を描くと(例えばABCDで対角線ACを引くとすると) ΔABCは正三角形になりますよね。しかも∠Bが90度で∠Aと∠Cが45度 という特殊な正三角形になります。この場合、各辺の割合が AB:BC:AC=1:1:√2 となります。 よってABは8センチなのでACは8√2となります。 頂点Oから垂線OHをひいたのであれば点Hはかならず正方形の中心に くることになり、AH=0.5×AC=4√2となります。 また三平方の定理とは、直角三角形ABCがあるときに AB^2 + BC^2 = AC^2 という式が成り立つのです。 これを利用すると 8^2 + 8^2 = AC^2 AC^2 = 64+64 AC~2 = 128 √(AC^2) = √128 AC = √(64 × 2) AC = 8√2 となりAHはその半分だから4√2となる。 今度は直角三角形OAHと見てみる。 ここでも3平方の定理を利用し、 AH^2 + OH^2 = OA^2 OH^2 = OA^2 - AH^2 OH^2 = 81 - 32 √(OH^2) = √49 OH = 7cm となります。

nyankomama
質問者

お礼

色んな解答方法を書いてくれて すごくうれしかったです。 私としては、三平方の定理から求めるやり方が 1番わかりやすかったので こちらで、勉強していこうと思っています。 図形の問題について 私が受験する学校は異例というぐらい たくさん出題されていて あまりの自分の出来なさに くじけそうになりますが 負けないように頑張っていこうと 思っています。 私は、独学で勉強していて わからない問題があっても聞く人もいないので 本当に、助かりました。 どうも、ありがとうございました。 また、質問するかもしれませんが その時は、よろしくお願いします(笑)

  • novaakira
  • ベストアンサー率36% (60/164)
回答No.5

まず(1)の回答から。 >(1)四角形PQRSの面積は >四角形ABCDの面積の2分の1の2乗=「4分の1」だから >8の2乗×4分の1=16(平方センチメートル) わかりやすく説明すると、 正四角すいなので底面は正方形です。すなわち AB=BC=CD=ADです。 辺OA、OB、OC、ODの中点をそれぞれ、P、Q、R、Sとする と書いてあるので OP=0.5×OA  (a) OQ=0.5×OB  (b) OR=0.5×OC  (c) OS=0.5×OD  (d) が求まります。 次にΔOABとΔOPQをみてみると 式(a)と(b)より相似であるといえる。よって PR=0.5×AB  (e) となる。 ・・・2組の辺の比が等しく、そのはさむ角が等しいより 以上よりPR=RQ=QS=PS=4cmとなる。 底面ABCDが正方形なら四角形PRQSも正方形になるので 四角形の面積は4×4=16平方センチメートルとなる。 四角形ABCDの面積の2分の1の2乗とかかれているのは、 これを省いて説明をしているわけです。 四角形ABCDの面積の2分の1の2乗というのは ただ、単に三角形の相似関係を利用して、PRはABの2分の1、 RQはBCの2分の1、それらを掛けたら「元の四角形ABCDの面積8の2乗」 より「4分の1」倍ってわけです。これはちょっと難しい答えですね。 わからなければもっと詳しく載せますので。

nyankomama
質問者

お礼

おかげさまで 理解することが出来ました。 ただ、△OABと△OPQが相似ということは わかるんですが 相似条件がほかの方と違うので この点は、どうなのかなぁ・・・と 思っています。 でも、この条件は、自分で解けば理解できるので だいじょうぶです(笑) (1)と(2)をわけて書いてくださり 見やすかったです。 助けていただき、ありがとうございました。 これで、また、頑張れそうです!!

noname#7269
noname#7269
回答No.4

四角形ABCDと四角形PQRSの相似比を求め、それから面積比がわかり、四角形ABCDの面積がわかっているから、四角形PQRSもわかる。このような流れです! まず相似比ですが、三角形OABと三角形OPQより、 AB:PQ(そのまま、四角形ABCDと四角形PQRSの相似比になる)=2:1ですよね。 ここまでいいですか? とすると、面積比は2乗ですから、4:1になります。 (相似比は長さの比なので、面積は例えばたて、よこと長さを2回掛けるので長さの比の2乗になり、また体積比は、例えば、たて、よこ、たかさ、と長さを3回掛けるので3乗の比になります) とすると、四角形ABCDの面積は8*8=64 の四角形PQRSは4分の1なので16となります。 次ですが、OHの長さを求めます。 それには、直角三角形OAHで三平方の定理を使います。 図を書けばわかりますが、HAの長さがわからないと使えません。そのためには、色々な方法がありますが、ここでは、直角三角形ABCからABの半分であるHAを求めてみましょう。これは三平方の定理から AB=√8^2+8^2=√128=8√2 よって、半分の4√2になります。 あとは、大丈夫そうなので・・・。

nyankomama
質問者

お礼

ポイントを絞って教えてくれて ありがとうございます。 見やすく、わかりやすく書いてあり とても助かりました。 OHの長さを求めるのは 他の人の解答を見た限り、色んな方法があるみたいですが 三平方の定理から求めるやり方が一番 わかりやすいので この方法で解く方法を、もっとマスターしようと 思っています。 図形が苦手なので、また、質問するかもしれませんが その時は、よろしくお願いします。 助けてくださって 本当にありがとうございました(笑)

  • ACSmasa
  • ベストアンサー率25% (7/28)
回答No.3

こちらから先に補足させてください。 (1)の中点連結定理ですが、2等分に限ったことではなく、より一般化すると、 △ABCにおいて、AB,ACをそれぞれm:nに分ける点をP,Qとすると、 PQ=BC*(m/(m+n))となります。 例えば、AB,ACを1:2に分けたとすると、 PQ=BC*(1/(1+2))=BC*1/3 となります。 (2)の回答の続きですが、 さきほど求めたAH=4ルート2を用いて、△OAHに三平方の定理を適用すると、 OA^2=AH^2+OH^2 となります。 したがって求めるOHは OH=ルート(OA^2-AH^2) =ルート(9^2-(4ルート2)^2) =ルート(81-32) =ルート(49) =7 となります。 では。。(^^)/~~~

nyankomama
質問者

お礼

補足説明してくださり ありがとうございます。 親切に教えていただいたおかげで 理解することができました。 また、質問するかもしれませんが その時は、どうぞ よろしくお願いします(笑)

回答No.2

最初のなぜ2分の1が分かったかということですが、 PQRSはOA、OB,OC,ODの中点なので 三角形OABと三角形OPQは相似ですよね。 で、条件でOPは線OAの半分なので、底辺のPQは線ABの半分です。 正方形の面積は、辺の長さが2倍だと、面積は4倍になるのでその逆をしたんです。 でも、回答にとらわれず、PQの長さが分かったので、そのまま計算すればいいと思います AH=4ルート2というのは、底辺の四角形に対角線を一ついれて、2つの4角形ができますよね、 その4角形は直角2等辺三角形で90度45度45度の三角形なので 1:1:ルート2になり、 対角線ABの長さは8:X=1:ルート2 の計算から 8ルート2になり、 AHはその半分なので2で割ります。 底辺の四角形を対角線2本引いたら、2で割らなくても1発ででますよ 受験がんばって!!

nyankomama
質問者

お礼

底辺の四角形を対角線2本で引いたら 2で割らなくても1発で出るんですね。 さっそく、やってみます!! 数学には、色んな方法があって 面白いと思うんですが、図形が苦手で 毎日、図形を重点的に勉強していますが ちょっと、うんざりしています(涙) 気分転換をはかりながら 受験日まで、頑張ろうと思っています。 ほかの方とは、ちがう方法を教えてくださり 本当に、ありがとうございました(笑) 図形がかなり苦手なので また、質問するかもしれませんが その時は、よろしくお願いします。

  • ACSmasa
  • ベストアンサー率25% (7/28)
回答No.1

(1)ですが、 P,Q,R,Sはそれぞれ中点ですよね。中点連結定理というのを知っていましたか? 例えば△ABCがあって、AB,ACの中点を結ぶ線分はBCの線分の2分の1かつ、BCと平行になるというものです。 したがって、四角形PQRSの各辺は四角形ABCDの各辺のそれぞれ半分になっていますよね。だから、 四角形ABCDの面積の2分の1の2乗=「4分の1」 と固く考えなくても、各辺が半分になったのだから4×4=16と考える方が簡単かもしれませんね。相似形の場合、線分が半分になったら、面積はその2乗、つまり4分の1になります。 (2)ですが、 三平方の定理とは、 「直角を挟む2辺の長さの2乗の和はもう1辺の2乗に等しい」 というものです。 ます、Hから辺ABへ垂線をおろした交点をFとします。 △AFHに三平方の定理を当てはめると、 AH^2=AF^2+FH^2 となります。(^は乗の意味) ここで、AF=4,FH=4を代入して計算すると。(FHが4になるのは分かりますよね) AH=ルート(AF^2+FH^2)ですよね。 AH=ルート(4^2+4^2)  =ルート(16+16) =4ルート2 になります。 分かりましたでしょうか??追加質問あれば遠慮なく/(^^)

nyankomama
質問者

お礼

(1)・・・中点連結定理を利用していけば 解ける問題ですね。気がつきませんでした(苦) 中学2年生の参考書で、中点連結定理を勉強したのに まだまだ理解していなかったみたいです。 さっそく、もう1度、かるく復習をして この問題を解いてみたいと思っています。 (2)・・・とてもわかりやすく書いてくださり ありがたいです。 Hから垂線をおろせば、三平方の定理が使えますね。 これで、ようやく理解できました。 親切に教えてくださり とてもうれしかったです。 図形が苦手で、試験日まで、図形に重点をおいて勉強していきますが わからないところがあったら こちらに質問するしか解決法がないので その時は、またよろしくお願いします。 それでは、本当に助けていただいて ありがとうございました(笑)

関連するQ&A