ONBのプロフィール
- ベストアンサー数
- 8
- ベストアンサー率
- 38%
- お礼率
- 0%
- 登録日2007/01/05
- 確率の問題です。
【問】 袋Aには赤球が1個、白球が2個。袋Bには赤球が1個、白球が2個、それぞれ入っている。 A、Bからそれぞれ1個ずつ球を選んで交換する操作を2回行う。 このとき、Aに入っている赤球が3個となる確率を求めよ。 また、A、Bの両方の袋に赤球が入っている確率を求めよ。 いつもお世話になっております。 この問の自分の答えが合っているか不安なので確認したく、投稿させていただきました。 よろしくお願いします。
- 締切済み
- 数学・算数
- kazukunnmama
- 回答数2
- ベクトルの内積を複素数で表したい
はじめまして。 複素平面上の点 0, z(1)=r(1)*e^iθ(1)=r(1){cosθ(1)+isinθ(1)}, z(2)=r(2)*e^iθ(2)=r(2){cosθ(2)+isinθ(2)} を考えます。 原点0からz(1)への2次元実ベクトル、 ( r(1)cosθ(1), r(1)sinθ(1) ) と、原点0からz(2)への2次元実ベクトル、 ( r(2)cosθ(2), r(2)sinθ(2) ) を考えます。 このとき、二つの2次元実ベクトルの内積 ( r(1)cosθ(1), r(1)sinθ(1) )・( r(2)cosθ(2), r(2)sinθ(2) ) を複素数z(1)、z(2)を用いて表したいのですが、どういった形になるのでしょうか? また、二つの複素数z(1)、z(2)の積 z(1)*z(2) をベクトルOz(1)、Oz(2)を用いて表したいのですが、どういった形になるのでしょうか?
- ベストアンサー
- 数学・算数
- ddgddddddd
- 回答数5
- ベクトルの内積を複素数で表したい
はじめまして。 複素平面上の点 0, z(1)=r(1)*e^iθ(1)=r(1){cosθ(1)+isinθ(1)}, z(2)=r(2)*e^iθ(2)=r(2){cosθ(2)+isinθ(2)} を考えます。 原点0からz(1)への2次元実ベクトル、 ( r(1)cosθ(1), r(1)sinθ(1) ) と、原点0からz(2)への2次元実ベクトル、 ( r(2)cosθ(2), r(2)sinθ(2) ) を考えます。 このとき、二つの2次元実ベクトルの内積 ( r(1)cosθ(1), r(1)sinθ(1) )・( r(2)cosθ(2), r(2)sinθ(2) ) を複素数z(1)、z(2)を用いて表したいのですが、どういった形になるのでしょうか? また、二つの複素数z(1)、z(2)の積 z(1)*z(2) をベクトルOz(1)、Oz(2)を用いて表したいのですが、どういった形になるのでしょうか?
- ベストアンサー
- 数学・算数
- ddgddddddd
- 回答数5
- ヘロンの公式をつかって・・・
三辺の長さが a=3cm,b=4cm,c=5cm のとき、ヘロンの公式を使って 計算をしてみると、最終的に s=6cm2 となったのですが、 この解は正しいのでしょうか?
- 厚生労働大臣の発言について
「女性は子供を産む機械だ」という、例の発言について質問です。 こういった系統の問題発言が多いことに疑問をもっています。 私は女性で、この発言はひどく不愉快に思いました。 しかし、あの世代の男性として育てられ今まで生きてくる中で、 そういう言い方をしてしまうのは一種仕方のないことなのかもしれない というように思われる方もいらっしゃるのでは、と考えます。 実感としてあの発言に共感できる、共感とまではいかなくても 責めようとは思わないというような意見をお持ちの方がいらっしゃいましたら ぜひお聞きしたく存じます。 ああいった発言はいったいどういうところから出てくるものなのでしょうか? どうぞ宜しくお願いします。