uzumakipanのプロフィール

@uzumakipan uzumakipan
ありがとう数65
質問数2
回答数94
ベストアンサー数
40
ベストアンサー率
81%
お礼率
90%

  • 登録日2006/11/27
  • 微積分の証明問題についての質問です。

    微積分の証明問題についての質問です。 xの2乗をx^{2}のように表しています。 f:R^{n} → R , p∈R とする。 fが微分可能のとき、次の(1),(2)が同値であることを示せ。 (1)任意のα>0 と(x1,x2,…,xn)∈R^{n} に対して、 f(αx1,αx2,…,αxn) = α^{p}f(x1,x2,…,xn) …(※) (2)任意の(x1,x2,…,xn)∈R^{n}に対して、 Σ[k=1,n]xk{∂f(x1,x2,…,xn)/∂xk} = pf(x1,x2,…,xn) …(♯) ヒントとして、 ・(1)⇒(2) (※)の両辺をαで微分して、α=1とおく。 ・(2)⇒(1) F(x1,x2,…,xn,α) := α^{-p}f(αx1,αx2,…,αxn) を考えて、 ∂F(x1,x2,…,xn,α)/∂α = 0 を示せ。 が与えられています。アドバイスお願いします。

    • nodacam
    • 回答数2
  • 微積分の証明問題についての質問です。

    微積分の証明問題についての質問です。 xの2乗をx^{2}のように表しています。 f:R^{n} → R , p∈R とする。 fが微分可能のとき、次の(1),(2)が同値であることを示せ。 (1)任意のα>0 と(x1,x2,…,xn)∈R^{n} に対して、 f(αx1,αx2,…,αxn) = α^{p}f(x1,x2,…,xn) …(※) (2)任意の(x1,x2,…,xn)∈R^{n}に対して、 Σ[k=1,n]xk{∂f(x1,x2,…,xn)/∂xk} = pf(x1,x2,…,xn) …(♯) ヒントとして、 ・(1)⇒(2) (※)の両辺をαで微分して、α=1とおく。 ・(2)⇒(1) F(x1,x2,…,xn,α) := α^{-p}f(αx1,αx2,…,αxn) を考えて、 ∂F(x1,x2,…,xn,α)/∂α = 0 を示せ。 が与えられています。アドバイスお願いします。

    • nodacam
    • 回答数2
  • マクローリン展開と置換積分(∫xcosxdx)

    現在大学2年で理工学部で物理専攻しています。 そこで、 ∫xcosxdx   -(#) についての質問なんですが、 (#)=∫x(sinx)'dx とおくと、高校数学の範囲で (#)=cosx+xsinx+C(積分定数) とわかるのですが、 (#)=∫(x^2/2)'cosxdx とすると、nの偶奇によって最終項が変わりますが、 (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)sinxdx もしくは (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)cosxdx となります。 マクローリン展開を使うと、 (#)= cosx + xsinx - 1 + ∫(x^n/n!)cosxdx or (#)= cosx + xsinx - 1 + ∫(x^n/n!)sinxdx になります。 これがcosx+xsinx+C(積分定数)になるには最終項の積分が定数にならなくてはおかしいと思うのですが、この最終項が定数に収束することって証明できるのでしょうか? または、この考察はどこか間違いがあるのでしょうか? よろしくお願いします。

  • 有界数列の収束半径

    問題 {an}が有界数列ならば、Σ(0,∞)an z^nの収束半径R≧1を示せ が分かりません。 よろしくお願いします。

    • gajiji
    • 回答数2
  • マクローリン展開と置換積分(∫xcosxdx)

    現在大学2年で理工学部で物理専攻しています。 そこで、 ∫xcosxdx   -(#) についての質問なんですが、 (#)=∫x(sinx)'dx とおくと、高校数学の範囲で (#)=cosx+xsinx+C(積分定数) とわかるのですが、 (#)=∫(x^2/2)'cosxdx とすると、nの偶奇によって最終項が変わりますが、 (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)sinxdx もしくは (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)cosxdx となります。 マクローリン展開を使うと、 (#)= cosx + xsinx - 1 + ∫(x^n/n!)cosxdx or (#)= cosx + xsinx - 1 + ∫(x^n/n!)sinxdx になります。 これがcosx+xsinx+C(積分定数)になるには最終項の積分が定数にならなくてはおかしいと思うのですが、この最終項が定数に収束することって証明できるのでしょうか? または、この考察はどこか間違いがあるのでしょうか? よろしくお願いします。