hiccupのプロフィール
- ベストアンサー数
- 12
- ベストアンサー率
- 27%
- お礼率
- 60%
貧乏神が . . .
- 登録日2006/09/19
- 部分空間Wの生成系
部分空間Wの生成系を求めたいのですが、求め方がわかりません。やり方を教えてください。 答えは(-27,15,2,0),(-21,11,0,2)だそうです。
- 締切済み
- 数学・算数
- shinnyamitsu
- 回答数1
- (x^3) -18x-35の解について
(x^3) -18x-35をカルダノの公式を使って解いているのですが、xを求め方がわからなくて困っています。 とりあえずu=3,v=2となり、一つ目の解がx=5ということは判明したのですが その後の、3ω+2ω^2,3ω^2+2ωの求め方がわかりません。 また、ωは(x^2)+x+1の根になるかよくわかりません。 そもそも、 なぜ(x^2)+x+1がででくるのか なぜ(x^2)+x+1の根の話がででくるのか x=5がわかったのでx-5で割れって(2次の)解の公式答えは導き出せますが、 ωを使ってどうしても解きたいです。 回答よろしくお願いします。
- (x^3) -18x-35の解について
(x^3) -18x-35をカルダノの公式を使って解いているのですが、xを求め方がわからなくて困っています。 とりあえずu=3,v=2となり、一つ目の解がx=5ということは判明したのですが その後の、3ω+2ω^2,3ω^2+2ωの求め方がわかりません。 また、ωは(x^2)+x+1の根になるかよくわかりません。 そもそも、 なぜ(x^2)+x+1がででくるのか なぜ(x^2)+x+1の根の話がででくるのか x=5がわかったのでx-5で割れって(2次の)解の公式答えは導き出せますが、 ωを使ってどうしても解きたいです。 回答よろしくお願いします。
- 三角形の面積の射影と方向余弦について
3次元空間内に△OABがあり、その面積をSとします。 △OABがつくる平面の法線単位ベクトルをn=(cosα、cosβ、cosγ)とするとき、 △OABをx-y平面に射影してできた△OA'B'の面積S'は S'=S |cosγ| となる・・・らしいのですが、その理由がわからずにいます。 n=(cosα,cosβ,cosγ) a=(a1,a2,a3) b=(b1,b2,b3) a'=(a1,a2,0) :ベクトルaをx-y平面に射影したベクトル b'=(b1,b2,0) :ベクトルbをx-y平面に射影したベクトル とすると、外積の利用により S=1/2×|(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)| S'=1/2×|(0,0,a1b2-a2b1)| などがわかります。 そこから、どうやって S'=S |cosγ| に辿りつけるでしょうか?