yoikagariのプロフィール

@yoikagari yoikagari
ありがとう数137
質問数0
回答数278
ベストアンサー数
87
ベストアンサー率
50%
お礼率
0%

夏祭り宵かがり

  • 登録日2005/01/18
  • 数学科に進んで素粒子論の研究者を目指すには

    私は今、大学1年生で2年生の時に学科選択があり、物理学科か数学科で悩んでいます。将来は素粒子論の研究者を目指していますが、素粒子の分野と高度な数学の分野(トポロジーや代数幾何、数論(ゼータ関数周辺)など)は密接にかかわりあっていると聞きます。また数学の世界自体、自分はとても興味があります。そこでとりあえず大学在学中は数学科に進み、物理は独学をして、いずれ大学院等で物理の方面に移れたらと考えています。(物理学科に進んで数学を自習するという選択も可能で、それが(素粒子を目指す者にとって)普通のような気もしますが、今の自分にとっては数学の本は読みにくく、物理の本は読みやすいというイメージがあり、数学の方がよりじっくりと取り組まなくてはならず、物理の方が自習しやすそうという見込みがあります。また既存の物理学にとりあえず必要なだけの数学を学ぶだけではなくある程度十分な数学の素養を身につけたいという考えもあります。)そこで素粒子の研究者になるためには具体的に大学院(またはその他)のどの時期に移ればよいのか(例えば博士過程は数学、物理のどちらで進むべきなのか)、またそれは可能な道であるのかを教えていただきたいです。身につけたい数学の素養は例えば代数幾何ではスキーム論(もしくはそれに関する本が読める程度の基礎知識)、数論でいうとゼータ関数周辺のある程度専門的な知識です。大学院のことについてはほとんど知識がありませんので詳しく教えていただけると幸いです。

    • icccci
    • 回答数1
  • 整数論の問題です。おねがいします。

    整数論の問題です。よろしくお願いします。 (1)主張「a,b,cを整数とする。aがbcを割り切るが、bを割り切らないならば、aはcを割り切る。」が正しいなら証明し、正しくなければ反例を述べよ。 (2)主張「整数a,b,cのうちのどの2数も互いに素でないならば、a,b,cの最大公約数は1より大きい。」が正しいなら証明し、正しくなければ反例を述べよ。 (3)素数13を法とする1の原始根をすべて挙げよ。

    • noname#164272
    • 回答数2
  • 巡回群について

    「Gを位数nの巡回群とする.このとき,Gの部分群の位数はnの約数で,各約数に対してただ一つ存在する.」 この証明でいくつか分からなかったので教えてください. (以下証明) G=<g>とし,m|nであるとする. ここでn/m=cとおくと,<g^c>は位数mの巡回部分群になる. また,これと異なる位数mの巡回部分群Sが存在すると仮定する. g^k∈S (kはこれを満たす最小の正整数)とすると,剰余の定理から n=qk+r (0<q∈Z,0≦r<k) となるq,rが存在する.このとき, g^r=g^(n-qk)=g^n(g^(-k))^q∈S で,kの最小性よりr=0を得る. よってn=qkとなり,Sの位数はqとなる.-(1) したがってm=qとなり,S=<g^c>.-(2) 以上より,nの約数に対して,ただひとつの巡回部分群が存在する. (証明終) この証明の最後の, (1):Sの位数はqとなる (2):S=<g^c> の部分がわかりませんでした. (1)について (g^k)^q=g^qk=g^n=e となりますが,これより「Sの位数はq」ということですか? (2)については包含関係を示しているのでしょうか? その辺がよくわかりませんでした. 長文申し訳ありませんがよろしくお願いいたします.

  • 整数問題。解ける方募集します。

    a,b,cは正の整数とする。 a^2+b^2=c^2 をみたし、かつaとbの差が1であるような組(a,b,c)は無数に存在することを示せ。 ※背理法による解法があれば教えてください。

  • 整数問題。解ける方募集します。

    a,b,cは正の整数とする。 a^2+b^2=c^2 をみたし、かつaとbの差が1であるような組(a,b,c)は無数に存在することを示せ。 ※背理法による解法があれば教えてください。