kup3kup3のプロフィール
@kup3kup3 kup3kup3
ありがとう数49
質問数1
回答数108
- ベストアンサー数
- 33
- ベストアンサー率
- 68%
- お礼率
- 100%
- 登録日2008/06/24
- 代数学について(部分群を示す)
2.準同型写像f:G⇒G'において像f(G)はG'の部分群であることを示せ。 準同型なので、f(ab)=f(a)f(b)が常に成立する。 ここからどのように部分群であることを示して行くのかを教えてください。
- 代数学について(部分群を示す)
2.準同型写像f:G⇒G'において像f(G)はG'の部分群であることを示せ。 準同型なので、f(ab)=f(a)f(b)が常に成立する。 ここからどのように部分群であることを示して行くのかを教えてください。
- 代数学について(部分群を示す)
2.準同型写像f:G⇒G'において像f(G)はG'の部分群であることを示せ。 準同型なので、f(ab)=f(a)f(b)が常に成立する。 ここからどのように部分群であることを示して行くのかを教えてください。
- 代数学について(正規部分群)
問:群Gの中心ZはGの正規部分群であることを示せ。 G の任意の元 a に対して a-1Na ⊆ N が成り立つ 群Gの元aに共役な元aだけであるとき、G=C(a)となり、aは群Gの任意の元と可換である。このような元の集合をGの中心という という部分はかいてあったのですが、いまいち言葉の意味が判りませんでしたので、 ご回答をお願いします。
- 代数学について(正規部分群)
問:群Gの中心ZはGの正規部分群であることを示せ。 G の任意の元 a に対して a-1Na ⊆ N が成り立つ 群Gの元aに共役な元aだけであるとき、G=C(a)となり、aは群Gの任意の元と可換である。このような元の集合をGの中心という という部分はかいてあったのですが、いまいち言葉の意味が判りませんでしたので、 ご回答をお願いします。