haoopyのプロフィール
@haoopy haoopy
ありがとう数3
質問数2
回答数1
- ベストアンサー数
- 0
- ベストアンサー率
- 0%
- お礼率
- 57%
- 登録日2008/05/28
- 平方根応用問題
√756+√nが整数の平方根となるようなnの最小値を求めよ。ただしnは整数とする。という問題があります。 その問題の解答を見てみると、n=0とすると、√0=0だから、√756+√ん=√756となり、√756は整数756の平方根だから、条件に適する。よって、求めよって求めるnの最小値は0である。なお、nを正の整数と考えた時は、√756+√n=6√21+√nが計算されて1つの根号で表わされるようにすればよいから、nの最小値は21となる。このとき6√21+√21=7√21=√1029より整数1029の正の平方根となります。 が解答なのですが、私には、なぜ答えが21ではいけないのかわかりません。。 それにn=0としてしまうと、√756は整数ではなくなると思うのですが。
- 締切済み
- 数学・算数
- noname#68176
- 回答数3